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Abstract: Data analysis is undoubtedly a major part in any general epidemic preparedness and control. Several 

statistical methods have been developed over the years for better and accurate analysis of epidemic data. Key 

among such methods is the use of stochastic epidemic models. This study used Bayesian technique to do inference 

for stochastic epidemics given data from CSM outbreak. The data for the analysis was a 2010 CSM outbreak data 

from Jirapa township in Ghana with a population of 6139 people and an ultimately infected number of 354 people. 

Conjugate and uninformative prior selections methods were considered for the study of which the former was seen 

to present better results based on the diagnosis analysis of results from both methods. In estimating the summaries 

of these parameters from the joint conditional distribution, the study adopted MCMC algorithms which was 

implemented in R using a combination of packages. In presenting the results, the study considered 2 parameters 

out of the several that can be estimated with the model. The results of the sampling of the exposure period   shows 

that the outbreak population has a very high exposure period with   having a median of 8.8965 days. This is 

indeed very high as compared to the WHO standard of between 2 and 10 days. Also, the rate of infection   had a 

median of 0.7334. The two parameter estimates are some of the factors that lead to the ultimate extinction of the 

outbreak before it could spread to all the entire township. 
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I.  INTRODUCTION 

Methods for the modelling of infectious disease propagation have been a challenging field for many researchers for 

decades, partly due the way data collection is conducted during any major epidemic outbreak, and partly due to the 

complex nature of population structures and most especially that of human populations. 

O’Neill (2002) described the analysis of disease propagation as a non-standard problem of which so many different 

methods have been proposed and used in some cases. The desire for accurate analysis of epidemic data have led to so 

many different approaches being proposed. 

The use of Bayesian method for the analysis of epidemic outbreak data using stochastic epidemic models have gained so 

much interest among researchers in recent years. Epidemic outbreak by its nature is a stochastic phenomenon in which the 

disease can either get extinct after initial emergence or will ultimately infect many individuals in a given population. 

Secondly, attention can be due to the flexible nature of the method. The method assumes randomization for parameters 

which can be estimated at any small time      given some data. This makes the Bayes’ method much more consistent 

with the behavior of epidemic outbreak in a population, of which the parameters of the epidemic and the population can 

change at any given time. 

Even though a lot of work have been done on the use of Bayes’ theorem in the analysis of epidemic data using stochastic 

models, much of the work largely remains at the methodological development stages with little or no attempt at the use of 

these methods to do inference using real epidemic outbreak data.   
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O’Neil (2002) did some work on a model that was initially described by Andersson (1999). The model was later extended 

in the work of Hunter et al., (2010) with inference on Measles outbreak data from Hagelloch, a community in Germany in 

the 1800s. The work done on the model have largely been the development of the methodology needed to estimate both 

the epidemic parameters and the those of the population structures. The model assumes a random population structure 

which is described in the model using a Bernoulli random graph. 

This study therefore performed inference on the epidemic model as described in O’Neill (2002) using Cerebrospinal 

Meningitis (CSM) outbreak data which occurred in Ghana. The data will be a good one for inference using such model 

since the transmission process of CSM in Ghana is largely seen to be by human contact, which is one of the basic 

assumptions of the model among others. 

II. METHODOLOGY 

Analysis of epidemic data have traditionally been very challenging especially giving the population structures of an 

infected population. Hunter et al., (2010) noted in their work that the main challenge is how to difference the impact of 

the population structure parameter and epidemic parameters on the spread of the epidemic. O’Neill (2002) also noted the 

difficult of striking a balance between a too simplistic model that might not be attached with any seriousness to run a 

meaningful inference, and a far too complex model that ends up given too much information that it is eventually very 

difficult to understand.  

The basic assumption of this model is that the epidemic outbreak is over. This implies the number of observe removals is 

the same as those infected. 

By the compartmental modelling method, the entire population can be divided into four groups of Susceptible, Exposed, 

Infected and Remove, generating a model called the SEIR model.  

If               ,                and                represents the random variables associated with the 

Exposure, Infected and Removal times of individuals in the population respectively. Then, the epidemic data of the entire 

population will be of the form: 

                                          (1) 

To deal with the challenge of modelling the population structures, the model makes some convenient assumptions which 

include a uniform probability of contact between any two individuals and the independence of the existence of a contact 

between any two individuals. The contact process can therefore be assumed to follow an Exponential-Family Random 

Graph Model (ERGM) given by the relation: 

        
   {∑   ∑  {   } {   }  {   }

 
   }

    
 (2) 

Where  {   } indicates the presence of a contact between   and   and   is a matrix of ( 
 
)    of the dyadic covariates. 

With the intension of limiting the model to the exponential family of distribution, the various epidemic parameters are 

identified as follows: 

Given that the infectious make contact with susceptible individual at an exponential rate with mean 
 

 
, then     is the 

rate of infection.  

The study also used the gamma distribution to describe the random variables associated with the exposed and infectious 

states. That is, the time an individual spends at each state. If   is the random variable associated with the exposure time, 

then               . Equivalently, if   is the random variable associated with the infection period, then 

              . These variables are included in the model later as parameters to be estimated. 

Two kinds of prior distributions selections will be considered. The conjugate prior and the non-informative prior for both 

the network and model parameters. Specifically, beta distribution is used for the network parameter   which is conjugate 

for the distribution of  ; the gamma distribution is conjugate for the Model parameters   which has an exponential 

distribution. Also, inverse gamma distribution is assigned for the model parameters    and    since they both are 

parameters of a gamma distribution. 

However, all the above parameters will also be assigned uninformative uniform priors during the analysis to compare 

which of the two methods improves the model. 
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Bayesian inference method was then used to estimate the parameters of the model. This was done by assigning prior 

distributions for the various parameters and together with the available data, the joint posterior can be estimated using the 

relation of the Bayes theorem given as: 

  (      )  
 (      )    

       
 (3) 

Where   is the set of parameters for the joint posterior distribution.  

Based on the Bayes theorem as given above, the joint posterior distribution is therefore given by; 

        (   )       |     |                                      (4) 

This includes all the possible parameters of the model including the realizations of the network parameters   and   given 

as   and   respectively.   {                    } represents the set of all parameters. 

An MCMC algorithm was then used to sample these model parameters, and summary statistics generated from the sample 

values of each parameter. This is particularly necessary to avoid the complex calculations that are involved in estimating 

the likelihoods of various parameters as can be seen in the Bayesian paradigm.  

Finally, the Model was implemented using a combination of R packages including epinet, a package that is built base on 

the proposed algorithm choice for this study being the leading package. The performance of the model was tested by 

doing a diagnostic analysis for the MCMC output. This involved checking for various model performance indicators such 

as mixing and convergence. For more detail on how the R package epinet works see Christ and David (2014). 

III. RESULTS AND DISCUSSIONS 

A preliminary analysis done to achieve two things, first to subject the epidemic data to consistency checks to ensure that 

there are no outliers which will end up affecting the accuracy of the epidemic model. On the second part of the 

preliminary analysis, the infection and removal time of each of the 354 ultimately infected individuals are estimated based 

on the case reporting date and date of onset of symptoms. The unit of measurement of time in the case of the CSM data is 

days.  

Table 1: Summary of various variable in the CSM data set 

Var. name             obs.        mean             median         s.d.              min.               max.   

id                           354         177.5             177.5           102.34          1                     354    

age                         354         23.18             18               19.3              0.17                 81     

sex                         354         1.489             1                 0.501            1                      2 

fever                      344         1.96               2                 0.195            1                      2              

headache                354         1.986             2                 0.118            1                      2 

stiffneck                 354         1.986             2                 0.118            1                      2 

lp                           354         1.757             2                 0.436            1                      2 

reported-date          350         6-10-2010                                              2-7-2010          8-5-2010 

onset-date              353         6-7-2010                                                2-5-2010          8-5-2010 

outcome                354          1.096             1                 0.295            1                      2 

The data as received from the Ghana Health Service is first subjected to quality check to ensure all duplications and 

missing values are corrected. The variables of interest that will enable us to do this is the identity or id of the individuals.  

Taking a closely at the summary of the identity of each of the 354 individuals. The summary has a minimum value of one 

and a maximum value of 354 which is accurate. Furthermore, we check the mean of the variable by obtaining mean 

(1:354) which returns a value of 177.5, consistent with what the summary produced. 

All the variables relating to symptoms are coded as factors with a yes or no responds for each. The case definition is the 

appearance of any of the symptoms as shown in table 4.1  

Since the stochastic epidemic models are inferred using time data, the original CSM data will be used in doing that in this 

section. The original CSM data has the date each of the infected individuals first showed symptoms of CSM and the date 

that they reported to a health facility. 
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To estimate the removal and infection times, it is important to first make two assumptions with expert advice from the 

surveillance unit of the Ghana Health Service. The study assumes that infection started a day before symptoms first 

emerged and removal time began 8 days after a person reports to a health facility, after which the person should have 

become well or died. 

After estimating the removal and infection times of the ultimately infected individuals, the information is put back into the 

population data to obtain an     matrix, where   is the total number of individuals in the affected population. The five 

columns represent respectively the individual ID, the parent node most likely responsible for their infection, the exposure, 

infection and removal times. All missing data and data for uninfected individuals in the population are coded with   . 

Below is table 2 showing a summary of the final data as used for the inference. 

Table 2: Summary of infection and removal times 

                 NodeID        Parent           Etime                Itime                Rtime       

Min.           1                 NA               NA                   3.00                 2.0   

1st Qu.       1536            NA               NA                   9.00                 135.0  

Median      3070            NA                NA                   10.00              149.0  

Mean         3070            NaN              NaN                 10.51               41.1   

3rd Qu.      4604            NA                NA                  11.00               160.0  

Max.          6139            NA                NA                  32.00               207.0   

                                    NA's: 6139     NA's: 6139       NA's: 5789       NA's: 5789     

From Table 2, it can be observed that the data obtained from the Ghana Health Service was only enough to construct the 

infection and removal time of 350 out of the 354 recorded cases during the entire outbreak period. This is due to missing 

time records for 4 infected individuals. 

For the purpose of including the population parameter in the epidemic model, we considered every member of the 

population as a data point regardless whether their information is available or not. To this regard, the NodeID variable 

ranges from 1 to 6139 with each individual in the population assigned a unique ID. 

Exposure time of all the members of the population whether infected or not is not known and so is coded   . This is 

equally true for the variable Parent. The variable Parent is supposed to identify the most likely individual that is 

responsible for infecting a particular Node. Again, this is coded    for all uninfected individuals and infected individual 

for which such data is not available.    

After satisfying all basic assumptions of the model in terms of obtaining the required data format, the actual 

implementation of the model was conducted. 

The algorithm was implemented and diagnosed using a combination of packages in R. The main packages being epinet 

package and coda package. The algorithm was run for 1000000 times and thinning at an interval of 1000 iteration to 

produce a minimum of 10000 samples for each parameter.   

The algorithm was first run with uninformative Uniform prior for all model parameters, then with the respective conjugate 

priors as specified in early in the study. For both cases, the transmission tree is maintained as having a Uniform prior. 

Specifically, we choose distributions as follows: 

   |     0,2),    |               |          ,     |             ,     |            and     |          , all 

for the uninformative Uniform prior.  

For the conjugate prior, we choose the prior as follows; 

   |         2,2), 

   |               

    |                ,  

    |                  ,     |                and     |                . 

The parameter specifications are done randomly but to accommodate some constrains that have been imposed by some 

distributions. For instance, the beta distribution can take values 0 to 1. Similar constrains can be said of invers Gamma, 

Gamma and Uniforms distributions respectively. 
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In diagnosing the output of the MCMC algorithm, we take a first look at the first scenario in which noninformative 

uniform prior was used for all epidemic related parameters. We take a look at the summary statistics of selected 

parameters from the joint posterior distribution. Of particular interest is the parameters relating to the time of exposure   

and that of the rate of infection  . In addition to the exposure time and the rate of infection parameters, we also sampled 2 

parameters relating prior distribution of the exposure time variable  . That is    and   . From the summaries in table 4.3 

below, the exposure times of ultimately infected individuals have a mean and median of 6.9586 and 6.9732 respectively. 

This is consistent with available literature and regulations on CSM which puts the incubation period between 2 to 10 days. 

The rate of infection   also appears to be within a reasonable range, having a mean of 0.97589 and a median of 0.98589. 

The rate of infection   is justifiably small due to the fact that we had just a total of 350 ultimately infected individuals 

from a population of 6139 individuals. 

Table 3: Posterior summary of selected parameters from the uniform prior 

                                                                                                                   

Min.                 0.02589              2.237               3.702               0.5544 

1st Qu.             0.88844              3.366               5.237               7.5654 

Median             0.98341             3.639                5.674               6.9732 

Mean                0.97589             3.655                5.735               6.9586 

For further diagnoses of the model in terms of mixing and convergence, we take a close look at the acceptance rate and 

effective sample size of the selected parameters. The acceptance rate of all four parameters ranges from 0.2980 to 0.2707 

indicating a good mixing and convergence of the algorithm. As discussed earlier, an acceptance rate of between 25% to 

75% indicates a good mixing and an ultimately converging algorithm. 

Furthermore, an examination of the effectively sample size indicates a good mixing and converging algorithm. The 

effective sample size is the sample size of each parameter taking into consideration autocorrelation. Generally, an 

effective sample of 200 or more is enough to obtain the needed information about a given parameter. An algorithm 

therefore needs to run long enough to obtain such a sample. In the case of this study’s algorithm, it was run 1000000 

times, enabling a sample of nearly 10000 or more for each parameter. One thing to notice from the output of the 

acceptance and effective sample is that all the three parameters relating to the Exposure times have the same values. This 

is understandable since there all are geared toward explaining the same epidemic phenomenon. Table 4 below shows the 

effective sample size and the acceptance rate of selected parameters using uniform priors. 

Table 4: Effective sample size and acceptance rate of parameters with Uniform prior 

                                                                                                                                         

Acceptance rate                   0.2707             0.2985            0.2985            0.2985 

Effective sample size          10107.00          10980.5151     10980.5151            10980.5151 

The posterior summaries of the same parameters using their respective conjugate priors produced a rather slightly 

different result compared to those sampled using uniform prior. The exposure period    have mean of 8.8893 and median 

of 8.8965, both significantly higher than those produced with the uniform prior. 

On the other hand, the rate of infection   have a mean of 0.72964 and median 0.73340, both significantly lower than those 

produced using the uniform noninformative prior. In both cases however, the results are within existing ranges that 

existing knowledge and literature on CSM supports. 

The issue of which prior selection technique makes the model better will be explored further in the other diagnosis 

methods of the MCMC results. Below is the table showing summaries of the parameters from the conjugate prior 

distributions. 

Table 5: Summary of selected parameters from the conjugate priors 

                                                                                                                         

Min.               0.02218              5.000                 2.000                 0.2568 

1st Qu.           0.65438              6.412                 2.955                 9.5125 

Median           0.73340              6.555                 2.977                 8.8965 

Mean              0.72964              6.560                 2.968                 8.8893 
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Like the output obtained with a uniform prior, the acceptance rate for the output with conjugate priors ranges between 

0.3180 and 0.3307 for all selected parameters. Also, the effective sample size ranges from 10180.3220 to 10307 across all 

four parameters. 

These figures show a slight improvement compared to those obtained using uniform prior for all parameters. This is 

particularly visible in the effective sample size with which there is a generally slight improvement compared to those 

obtained from the uniform prior output.  Below is table 6 showing the output for the acceptance rate and effective sample 

size for the four selected parameters.  

Table 6: Effective sample size and acceptance rate of parameters with conjugate priors 

                                                                                                                                    

Acceptance rate                  0.3307             0.3180           0.3180         0.3180  

Effective sample size         10307.00          10180.3220    10180.3220        10180.3220   

Finally, the marginal posterior density of   and   as sampled from the joint posterior distribution is considered.   

First take a look at the posterior density of   and   . The algorithm was able to recover the initial values of zero for each 

of the two parameters. The posterior density also shows rate of infection going as high as 2.0 at some point of the 

epidemic making it the maximum of value for  .  Below are the marginal posterior densities for   and    respectively. 

 

Fig.1: Marginal posterior densities for   using conjugate prior 

 

Fig.2: Marginal posterior densities for    using conjugate priors 
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One indicator of interest of the algorithm is the autocorrelation functions of the samples of respective parameters. Again, 

the interest is on the rate of infection  . The study also considered the parameter   . By autocorrelation, looks at the 

correlation between every sample and the sample   iterations before it. In a well-mixed and converged algorithm, the 

autocorrelation will get smaller with increasing iterations. In other words, when the algorithm runs long enough it should 

be able to produce independent samples for each of the parameters of the model. Higher autocorrelation at higher 

iterations is an indication of a slow mixing algorithm. 

The autocorrelation of   and    as shown in Fig. 3 and Fig. 4 indicates one that approaches zero as the number of 

iterations increases.  In both cases, autocorrelation is zero by the expected minimum sample of 10000 indicating that the 

algorithm was producing independent samples for each parameter after that. Below are Fig. 3 and Figure 4 showing the 

autocorrelation functions of the parameters   and    respectively. 

 

Fig.3: Autocorrelation function for   using conjugate priors 

 

 

Fig. 4: Autocorrelation function for    using conjugate priors 
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IV. CONCLUSION 

The study conclusion starts with the model selection. Two set of Bayesian prior selection method were considered for the 

study, Uniform priors and conjugate priors. Based on the diagnoses presented in chapter 4, the conjugate prior models are 

selected over the Uniform prior. Although both prior selection methods produce acceptance rate that is between the 

acceptable range of 25-75, the conjugate prior produced larger effective sample size as compared to the Uniform prior. 

For all parameters, the conjugate prior produced an acceptance rate from between 0.3180 and 0.3307 whilst the Uniform 

produced an acceptance rate from between 0.2807 and 0.2985. The effective sample size for conjugate priors ranges from 

10180-10307 whilst that of the Uniform priors ranges from 10107-10980.5151. 

The analysis therefore revealed a very high exposure period for the population under consideration with   having a mean 

of 8.8893 and a median of 8.8965. This means that the CSM virus takes an average of 8.8893 days to incubate in 

individuals after an initial contact. 
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